
Error Checking with "POU for implicit checks"
Sometimes it happens that the application on the controller crashes mysteriously with a message such as "Access violation". Double-clicking the "Source 
position" in the PLC log jumps to the code position, showing crash positions that do not appear to have any connection to the problem (for example, a 
simple TON box or a library). Another indication for these types of errors is when the code position changes when the application is changed.

The common cause is writing beyond the bounds of an array.

This can be detected, for example, by using "POU for implicit checks", and here particularly with the function "CheckBounds".

Example:

Requirement

Create a "Standard project" and select " " as the device.CODESYS ControlWin V3
Define the target system by means of the Network scan.

Adapt the " " POU as follows:PLC_PRG

Declaration

VAR

iIndex : INT; 
astInst : ARRAY [1..5] OF INT := [5
(101)]; 
xActivate : BOOL;

END_VAR

Implementation

IF xActivate THEN
    xActivate := FALSE;
    FOR iIndex := 0 TO 5 DO
        astInst[iIndex] := 234;
    END_FOR
END_IF

Downloading and starting the project

For reasons of performance, "POU for implicit checks" should be removed from the project after debugging. It is not enough to rename it.

The implicit checks are performed only for code within the project.

If libraries are to be checked, then the compiler definition   must be set.checks_in_libs



Download the project to the controller and start the application.
The following image is displayed after you set the xActivate variable:

Including the function "CheckBounds"

Add the object "POU for implicit checks" to the project:

The expected result is that all elements of the array are set to the value "234".

As the lower bound of the array is set to "1", the memory area of the counter variable is described incorrectly with 234 in the first executed loop 
(iIndex has value "0") because it is located in the memory area before the array.

In the next executed loop, it is detected that the cancellation condition of the loop is fulfilled, and as a result no element of the array will be 
written.

These kinds of mistakes in the memory can have unexpected results, as severe are the controller crashing.



The following dialog opens automatically, where the type of check can be selected.
Select the option .Bound checks



Using the function "CheckBounds"

Download the project to the controller and start the application.
Set a breakpoint at the desired check.

Only one option should be selected. The check may have to be repeated with another option.



If a bound violation is detected, then the project is halted at the breakpoint.

Switch to the PLC_PRG POU and set the xActivate variable to TRUE.

The projects stops at the breakpoint regarding lower bound violation.

Exit the  function by stepping (press F10 two times) and the debugger jump automatically to the position where the boundary CheckBounds
violation was detected:



As an alternative, the call stack can also be displayed and and from there a jump made to the relevant position:


	Error Checking with "POU for implicit checks"

