OPC UA: How many variables is the limit?

The title is a frequently asked question that can be answered quite easily: "There is no fixed limit."
Nevertheless, there are various possibilities to minimize the performance demand of the OPCUA server and thus to lighten the load on the controller. The
influence of hardware is ignored in this article.

1 Allvalues refer to the online mode. Load peaks during login or browsing of the data points via the client are not examined.

A Raspberry Pi 3 serves as controller and the Unified Automation UaExpert was used as client.
A POU with 1000 variables of type UDINT as created as a test project.
A value change can be switched on or off at the variables:

This POU can then be copied as often as required, working with 10,000 "prepared" variables.
The copied POUs are called using the code of PLC_PRG.

Simply providing the data points has no negative influence on the CPU load because the data is not used.
However, the compiler process takes longer.
In the test project, the CPU has a load of ~8%, whereby the monitoring of the CODESYS IDE is continuously active.

pi@ThK_raspberry: ~

As soon as the client is connected, the load increases to ~9%, which is the base load.

“ Unified Automation LaExpert - The OPC Unified Architecture Client - PerformanceTest_10
S —.

DePDBE + XKGS B E
Project g X Data Access View

4 [Project # Server
4 [1 Servers
'y OPCUAServer@ThK_raspberry - None - None (uat
4 [1 Documents —
[3 Data Access View £P pi@ThK raspberry: ~

4 1

Address Space PID USER
Mo Highlight

) Root
M # CD Objects

Value changes

When the first 1000 data points are activated by the client, the load increases to ~17%.

Data Access View Q
Server Node Id Display Name Value Datatype jource Timestam *
OPCUAServer@ThK raspberry - None - None (uatcp-uasc-uabinary) N54|String|lvar| CODESYS Control for Raspberry Pi SL.Application.PLC_PRG.udi000 udi000 0 Ulnt32 11:04:19.769 =
QPCUAServer@ThK_raspberry - Mone - None (uatcp-uasc-uabinary) NS4|String||var| CODESYS Control for Raspberry Pi SL.Application.PLC_PRG.udi001 udi00l 0 Ulnt32 :04:19.769
OPCUAServer@ThK_raspberry - None - None (uatcp-uasc-uabinary) NS4|String||var| CODESYS Control for Raspberry Pi SL.Application.PLC_PRG.udi002 udi002 0 Ulnt32 9.
OPCUAServer@ThK raspberry - None - None (uatcp-uasc-uabinary) NS4|String|lvar| CODESYS Control for Raspberry Pi SL.Application.PLC_PRG.udi003 udi003 0 Ulnt32
OPCUAServer@ThK_raspberry - None - None (uatcp-uasc-uabinary) N34[String||var| CODESYS Control for Raspberry Pi SL.Application.PLC_PRG.udi004 udiood 0
OPCUAServer@ThK_raspberry - None - None (uatcp-uasc-uabinary) NS4|String||[var| CODESYS Control for Raspberry Pi SL.Application.PLC_PRG.udi003 udi005 0
OPCUAServer@ThK_raspberry - None - None (uatcp-uasc-uabinary) NS4|String|lvar| CODESYS Contrel for Raspberry Pi SL.Application.PLC_PRG.udi006 udi00s 0
L= Tii AL Y T Py L nicu E = e a

pi@ThK _raspberry: ~

PID USER RES TIME+ COMMAND

1
2
3
rt
5
6
7
8
9
10
11
12
12
14
15
16
17
18
19
20
21
22
22

11:04:19.
11:04:19.769

When we start the counter, we have a constant value change of the variable.
This increases the load to ~23%.

RES SHR 5 $CPU $MEM TIME+ COMMRND

Data Access View [x]
Server Nodeld Display Name lue Datatype rource Timestam *

1 OPCUAServer@ThK_raspberry - Mone - None (uatcp-uasc-uabinary) NS4|String|var|CODESYS Control for Raspberry Pi SLApplication PLC_PRG.udi000 udi000 1074 Ulnt32 11:07:35.100 =

2 OPCUAServer@ThK raspberry - None - None {uatcp-uasc-uabinary) NS4|String|var| CODESYS Control for Raspberry Pi SL.Application.PLC_PRG.udi001 udi001 1074 Ulnt32 11:07:35.100

El OPCUAServer@ThK raspberry - None - None (uatcp-uasc-uabinary) NS4|String|lvar| CODESYS Control for Raspberry Pi SL.Application.PLC_PRG.udi002 udi02 1074 Ulnt32 11:07:35.

4 OPCUAServer@Th _raspberry - None - None (uatcp-uasc-uabinary) NS4[String|lvar| CODESYS Control for Raspberry Pi SL.Application.PLC_PRG.udi003 udi003 1074 Ulnt32

5 OPCUAServer@ThK_raspberry - None - None (uatcp-uasc-uabinary) — NS4|String|var|CODESYS Control for Raspberry Pi SL.Application PLC_PRG.udi004 udi004 1074 Ulnt32

6 OPCUAServer@ThK raspberry - None - None (uatcp-uasc-uabinary) NS4|String|lvar| CODESYS Control for Raspberry Pi SL.Application.PLC_PRG.udi005 udi005 1074 Ulnt32

7 OPCUAServer@ThK_raspberry - None - None (uatcp-uasc-uabinary) N54[String|varlCODESYS Control for Raspberry Pi SL Application.PLC_PRG.udi006 udi0ns T07% Ulnt32

8 Anc e) A . i eanco nicTnne ' waos _nna PP)

9 | #P pi@ThK_raspberry: ~ E=E =) 5

10 32

1u

12

13 11:07:35.100

14 11:07:35.100

15 11:07:35.100

16 11:07:35.

17

18

19

20

21

22

23

11:07:35100
11:07:35.100

The measurement results with an increasing number of data points are summarized in the following table:

Number of data points Subscribed data points without value change Subscribed data points with value change

0 ~10% (base load) of the project ~10% (base load) of the project
1000 ~17% ~23%
2000 ~25% ~35%
3000 ~30% ~45%
4000 ~36% ~55%
5000 ~41% ~67%

The first conclusion can be drawn as follows:

®* The CPU load, and therefore also the number of variables, depends on the number of value changes.

The next point, the sampling rate, can also be derived from this.

Sampling rate
The above measurement results are recorded with the default settings of the OPCUA client with an refresh rate of 500 milliseconds.
There are many values and parameters for which a slower refresh rate at the client has practically no influence.

As an example, a room temperature or preset/setpoints, such as the parameters of a PID controller, should be mentioned here.

Starting from the worst case in the above table, more and more data is now set to a lower sampling rate, while the others remain unchanged:

Sampling rate / Number of data points 0 1000 2000 3000 4000 5000

1000 ~67% ~65% ~64% ~62% ~60% ~59%
2000 ~67% ~64% ~62% ~59% ~58% ~56%
5000 ~67% ~64% ~61% ~59% ~56% ~54%

A mixed operation of 1000 variables each with a sampling rate of 500, 1000, 2000, 3000, and 4000 milliseconds resulted in a CPU load of ~59%.

The second conclusion can be drawn as follows:

®* The CPU load can also be reduced by dividing the variables into groups with different refresh rates.

Combination of data points in one array

The variables of a project can be combined not only in time-based groups via the OPCUA client, but also by data type on the controller.

For demonstration purposes, the program is extended a little bit:

@ UA_Performance.project” - COD!

File Edit View Project Buid Online Debug Tools Window Help
Sr=2=r= $ B EXIMAGAS 4% %% IB BT o
Devices - 3 x PLC_PRG [Device DataArray 3 ™2 Symbol Configuration
=g UA_Performance = 1 PROGRAM Datahrray
=: m Device (CODESYS Control for Raspberry Pi SL) = z VAR CONSTANT
= @1] PLC Logic 2 c_iMaxRrray : INT := 1000;
=€) Application 4 END VAR
m Library Manager - 5 vm
& diCnt UDINT
DataArray (PRG) - uetn R
PLC_PRG (PRG) audil ABRAY [0..c_iMaxRArray] OF UDINT;
= iIndex INT:
PLC PRG_1(PRG)] xChange BOOL;
PLC_PRG_2 (PRG) 10 END VAR
PLC_PRG_3 (PRG)
FLC_PRG_4 (FRE) 1| udicnt := udiCnt + 1;
PLC_PRG_5 (PRG) = = xChange THEN
PLC_PRG_6 (PRG) 3 FOR ilndex := 0 TO c_iMaxArray DO
PLC_PRG_7 (PRG) 4 audil[iIndex] := udiCnt;
PLC_PRG_8 (PRG) s END_FOR
PLC_PRG 9 (PRG) § EMDIF
-] Symbol Configuration

This time as well, the values are recorded with and without the value being changed.
Again, the sampling rate is at 500 milliseconds.

R
e et o o v 5 o o o N o o
— —

] 7 ~ -
PgPB@ =0 XY 8 BE =
Project =3 Data Access View
4 [Project # Server Node Id Display Name Value Datatype
4 [3 servers 1 OPCUAServer@.. NS4[Stringivar|CODESYS Control for Raspberry Pi SLApplication.DataArray.audil audil 10,00,00,00,0... Ulnt32
2} OPCUAServer@ThK raspberry - None - None (uaten:
4 [Documents | e

5 P pi@ThK raspberry: ~
Data Access View . :

« i,

Acdress Space

#4 |No Highlight
2 Root

4 3 Ahierte

Number of data points Without value change

With value change

1000 ~10% ~11%
2000 ~10% ~12%
3000 ~11% ~13%
4000 ~11% ~14%
5000 ~12% ~14%

@ Even if combining data points in different groups/arrays means more work in the actual project, this investment should be made for larger plants.

@ Please note that all tests were performed with only one client connected.
Of course, every additional client also increases the CPU load.
Here the first measurement (1000 individual variables with a value change) with two connected OPCUA clients:

E Unified Automation UaExpert - The OPC Unified Architecture Client - PerformanceTest_1000 [Unified Automation UaExpert - The OPC Unified Architecture Client - PerformanceTest_1000

OPCUAServer®... NS4[String]|var|CODESYS Control for R
OPCUAServer@ThK raspb OPCUAServer®... NS4[String]|var|CODESYS Control for R
OPCUAServer@ThK rasph OPCUAServer®... NS4[String]lvar|CODESYS Control for R

P pi@ThK raspberry: ~ nlal=

OPCUAServer@ThK_rasph

N 7 — ~ - 2 =z —_ ~ -
D@ PO & = Sy g | s N7 PO % = W S . B K i<
Project & X | Data Access View Project & X | Data Access View
4 [Project # 4 [3 Project £ Server
4 [3 Servers 1 OPCUAServer®ThK_raspb 4 [Servers 1 OPCUAServer@... NS4[String||var|CODESYS Control for R
{23 OPCUAServer@ThK raspberry - None - Nene (uatep{ |2 OPCUAServer@ThK_raspb 2y OPCUAServer@Thi_raspberry - None - None (ustcp-uasc-uabinary) || 2 OPCUAServer@... NS4[Stringllvar|CODESYS Control for R
. 3 OPCUAServer@ThK_raspb: e N 3 OPCUAServer@... NS4[String||var|CODESYS Control for R
B Documents 4 OPCUAServer@ThK rasph . ocuments 4 OPCUAServer@... NS4|String]|var|CODESYS Centrol for R
[0 Data Access View 5 OPCUAServer@ThK_raspb: [Data Access View 5 OPCUAServer@... NS4[String|jvar CODESYS Control for R
6 6
7 7
8 8

< n

Address Space

£ | Mo Highlight

I3 Root

4 [Objects

4 b DeviceSet
4 %y CODESYS Control for Raspberry Pi SL
4 & Resources
4 @& Application

PID USER 3 TIME+ COMMAND

	OPC UA: How many variables is the limit?

